Archive for the ‘Engineering’ Category

Another week and another successful Science club meeting – well, almost…..


As the year 7 and 8 science enthusiasts began to get to grips with some rocket building, a small glitch almost spelt disaster for the meeting!

Instead of building some mini-rockets, the girls got to begin thinking about how best to design their rockets, and discuss the best way to test them.

Should we aim for the highest rocket launch? Or the greatest distance travelled? Or should we aim to launch our rockets as fast as possible?


These are all factors the girls came up with to investigate, and we will be looking at investigating them all in next weeks club! So if you couldn’t make it today, make sure you come along for some rocket building next Thursday! 12.45pm in Science 5 πŸ™‚

Miss Gilleece πŸ™‚

On 4th July students and staff took part in the 24 Hour Water Rocket Challenge, a World Record attempt. Organised by the University of Central Lancashire and NASA, the aim is to have as many water rockets launched around the world in a 24 hour period.

Water rockets are really simple to make – they’re just 2L bottles with some water and high pressure air, but the result is amazing. Taking off at speeds of around 90mph, experiencing forces 60 time greater than gravity and reaching heights of at least 45m, they’re a great way to experience forces and momentum in action.

We were lucky enough to have two witnesses from local business Cotswold Camping (thanks Jim and Ant) and managed to achieve 16 separate launches over lunchtime. I’ll update this post when I hear if the World Record was beaten, but it’ll take a while for the organisers to count and verify all the results.

Thanks to all those that took part or came and watched.

Read more at the St Albans Review newsite

A water rocket blasts off from Space Station Loreto! (photo from St Albans Review – thanks!)

The 21st of July 2012 played host to the annual Maths and Science Day. Maths and Science Day allows all year 8 students to work off timetable for the enire day, working in teams to solve scientific and engineering challenges. Deviating from the task of previous years (parachutes for eggs) the teams this year were set the challenge of building a bridge that covers a 50cm span using only spaghetti and hot-melt glue.

The girls got straight to work, ably assisted by Yr 12 students. They worked really well together, with each student contributing to the team design.

Eventually, when all the bridges were built it was time to test them. Bridges were gradually loaded with more and more force until they broke. The winning team would be the one with the highest load:weight ratio. After a nailbiting testing session, a winner was declared – Team 25 with a load:weight ratio of 11:1!

Bridge 25 – the winning bridge!

After this the teams got together to create a poster explaining their design, the science behind the engineering of bridges and an evaluation of their bridges performance. Team 10 were judged to have the best poster for their careful analysis of why their bridge collapsed with only 10g on it!

A spaghetti bridge, inspired by a Warren Truss bridge

Every team worked incredibly well – their bridges may not have held a great load but they all produced a structure which they could be proud of.

Testing bridges

Funding for the purchase of the hot-melt glue guns and the spaghetti was kindly provided by the Institute of Physics (IoP) http://www.iop.org/Β , so many thanks to them for making this event possible.

On 7th February 48 students from Year 11, (accompanied by Mr Bilton, Miss Vine, Mr Pimentao and Miss Gilleece) travelled to Essex to visit the npower-operated Tilbury Power Station. The students study the generation of electricity as part of their course, so this was an excellent opportunity to see where it all happens. The Tilbury site was originally a coal-fired power station, but this year it switched to using biomass as the fuel source, as part of a programme to be ‘greener’ and depend on renewable sources.

Tilbury Power Station

The biomass used at Tilbury is wood pellets, produced from the sawdust and waste of the Canadian lumber industry, so it’s a good use of a material that would otherwise just be wasted. It also has less impact in terms of CO2 production than coal, because it’s not burning carbon that’s been locked away for millions of years.

Properly kitted out in hard-hats, ear defenders and high-visibility jackets the students were taken on a tour of the power station, at one point standing inside a 65m furnace which reaches temperatures of 1500ΒΊC (luckily for the students it wasn’t on at the time…). The scale of the facility is hard to imagine, but it gives you an appreciation of engineering behind the process.

Safety first - hard-hats and ear defenders!

The process of electrical generation is actually remarkable simple. When the biomass arrives it is crushed and then blasted into the furnace where it burns. The furnace is lined with pipes that contain ultra-pure water. As this water heats up it turns to steam. This high-pressure steam is used to turn turbines (converting heat energy into kinetic energy), and the turbines rotate an electro-magnet within a coil of wire. The movement of a magnet within a coil of wire creates the electrical current (thanks Faraday!) and that’s all there is to it.

Generating electricity - what's happening inside?

The students were also able to study some of the chemistry and biology surrounding the issue of power generation. Using conductivity meters the students recorded how many dissolved ions and minerals were in drinking and filtered water. They then compared it to water that had been through an ion-exchamge resin and were surprised to see that there were no ions left at all. This super-pure water (which actually tasted a little bland) has to be used in the power station to prevent damage to the pipes (picture the inside of your kettle..). The students then had a look at the local water quality by pond-dipping and looking for indicator species; species that tell you how clean the water is by their presence or absence. Having found a variety of insects including Common Backswimmers, Damselfy nymphs and Diving Beetles (and even some fish) everyone was surprised to conclude the water so near a power station was actually good quality and supported a diverse community.

Damselfly nymph - this larval form indicates good water quality

Common Backswimmer - this insect swims upside down

The students had a really good time and certainly learned lots about where their electricity comes from and how best to manage our energy resources so that we can live in a sustainable and ecologically-sensitive way. Many thanks too to the staff at the power station for giving us such an enjoyable day!

The Sun Project

Posted: January 4, 2012 by Mr Pimentao in Engineering, Physics, Space
Tags: ,

We sometimes take things for granted. Things like the food on our plate, the air we breathe, the water running from our taps. All of these would not be there if it wasn’t for our star, the Sun.
The Sun Project is an Astronomy and Engineering club.

The pupils involved have been developing solar panels to heat up water, investigating solar cells and how they can be used to build toys, or observing the surface of the Sun. Everyone is welcome to join at any time.

 

Solar storm, October 2003